Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gold nanoparticles on titanium and interaction with prototype protein

Identifieur interne : 005268 ( Main/Exploration ); précédent : 005267; suivant : 005269

Gold nanoparticles on titanium and interaction with prototype protein

Auteurs : J. Daniel Padmos [Canada] ; Paul Duchesne ; Michael Dunbar [Canada] ; Peng Zhang [Canada]

Source :

RBID : ISTEX:0A13BF5982F85FBB30162534DE9367E024AAFAB1

Descripteurs français

English descriptors

Abstract

Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti‐AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X‐ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti‐AuNPs. To study the interaction of Ti‐AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HSRCOOH)‐functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro‐BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol‐functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 × 104, 2.3 × 104, and 5.7 × 104 μg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol‐functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

Url:
DOI: 10.1002/jbm.a.32826


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gold nanoparticles on titanium and interaction with prototype protein</title>
<author>
<name sortKey="Padmos, J Daniel" sort="Padmos, J Daniel" uniqKey="Padmos J" first="J. Daniel" last="Padmos">J. Daniel Padmos</name>
</author>
<author>
<name sortKey="Duchesne, Paul" sort="Duchesne, Paul" uniqKey="Duchesne P" first="Paul" last="Duchesne">Paul Duchesne</name>
</author>
<author>
<name sortKey="Dunbar, Michael" sort="Dunbar, Michael" uniqKey="Dunbar M" first="Michael" last="Dunbar">Michael Dunbar</name>
</author>
<author>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0A13BF5982F85FBB30162534DE9367E024AAFAB1</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/jbm.a.32826</idno>
<idno type="url">https://api.istex.fr/document/0A13BF5982F85FBB30162534DE9367E024AAFAB1/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000480</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000480</idno>
<idno type="wicri:Area/Istex/Curation">000480</idno>
<idno type="wicri:Area/Istex/Checkpoint">001D72</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001D72</idno>
<idno type="wicri:doubleKey">1549-3296:2010:Padmos J:gold:nanoparticles:on</idno>
<idno type="wicri:Area/Main/Merge">005311</idno>
<idno type="wicri:Area/Main/Curation">005268</idno>
<idno type="wicri:Area/Main/Exploration">005268</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Gold nanoparticles on titanium and interaction with prototype protein</title>
<author>
<name sortKey="Padmos, J Daniel" sort="Padmos, J Daniel" uniqKey="Padmos J" first="J. Daniel" last="Padmos">J. Daniel Padmos</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country>Canada</country>
<wicri:regionArea>School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Duchesne, Paul" sort="Duchesne, Paul" uniqKey="Duchesne P" first="Paul" last="Duchesne">Paul Duchesne</name>
<affiliation>
<wicri:noCountry code="subField">4J3</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Dunbar, Michael" sort="Dunbar, Michael" uniqKey="Dunbar M" first="Michael" last="Dunbar">Michael Dunbar</name>
<affiliation wicri:level="1">
<country>Canada</country>
<wicri:regionArea>School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia</wicri:regionArea>
<wicri:noRegion>Nova Scotia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Canada</country>
</affiliation>
<affiliation></affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="ISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<imprint>
<biblScope unit="vol">95A</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="146">146</biblScope>
<biblScope unit="page" to="155">155</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-10">2010-10</date>
</imprint>
<idno type="ISSN">1549-3296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active amount</term>
<term>Active lysozyme</term>
<term>Active protein</term>
<term>Activity assay results</term>
<term>Activity assays</term>
<term>Adsorption</term>
<term>Anova test</term>
<term>Aqueous haucl4 solution</term>
<term>Article figure</term>
<term>Assay</term>
<term>Aunp</term>
<term>Aunp coverage</term>
<term>Aunp diameters</term>
<term>Aunp surface chemistry</term>
<term>Aunps</term>
<term>Bare aunp</term>
<term>Bare aunps</term>
<term>Beaker</term>
<term>Biological molecules</term>
<term>Biomed mater</term>
<term>Biomedical</term>
<term>Biomedical materials research</term>
<term>Biosci bioeng</term>
<term>Chem</term>
<term>Clin implant dent relat</term>
<term>Control discs</term>
<term>Cooh</term>
<term>Dalhousie university</term>
<term>Depletion method</term>
<term>Deposition</term>
<term>Different groups</term>
<term>Disc</term>
<term>Electroless</term>
<term>Electroless deposition</term>
<term>Enzymatic activity</term>
<term>Equal variances</term>
<term>Etching</term>
<term>Gold nanoparticles</term>
<term>Gold surfaces</term>
<term>Haucl4</term>
<term>Higher amounts</term>
<term>Implant</term>
<term>Implant materials</term>
<term>Implant surfaces</term>
<term>Lysozyme</term>
<term>Lysozyme adsorption</term>
<term>Lysozyme coverage</term>
<term>Lysozyme solution</term>
<term>Metal ions</term>
<term>Metallic gold</term>
<term>Micrococcus lysodeikticus</term>
<term>Nanoparticles</term>
<term>Nanostructured surfaces</term>
<term>Normality tests</term>
<term>Nova scotia</term>
<term>Orthopedic applications</term>
<term>Orthopedic implants</term>
<term>Oxide</term>
<term>Oxide layer</term>
<term>Phys chem</term>
<term>Plain aunps</term>
<term>Protein adsorption</term>
<term>Protein amounts</term>
<term>Protein solution</term>
<term>Prototype protein</term>
<term>Qualitative etching</term>
<term>Scanning electron microscopy</term>
<term>Second focus</term>
<term>Standard deviation</term>
<term>Standard solution</term>
<term>Surface area</term>
<term>Surface chemistry</term>
<term>Tio2</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surfaces</term>
<term>Variance</term>
<term>Various deposition methods</term>
<term>Weak interactions</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active amount</term>
<term>Active lysozyme</term>
<term>Active protein</term>
<term>Activity assay results</term>
<term>Activity assays</term>
<term>Adsorption</term>
<term>Anova test</term>
<term>Aqueous haucl4 solution</term>
<term>Article figure</term>
<term>Assay</term>
<term>Aunp</term>
<term>Aunp coverage</term>
<term>Aunp diameters</term>
<term>Aunp surface chemistry</term>
<term>Aunps</term>
<term>Bare aunp</term>
<term>Bare aunps</term>
<term>Beaker</term>
<term>Biological molecules</term>
<term>Biomed mater</term>
<term>Biomedical</term>
<term>Biomedical materials research</term>
<term>Biosci bioeng</term>
<term>Chem</term>
<term>Clin implant dent relat</term>
<term>Control discs</term>
<term>Cooh</term>
<term>Dalhousie university</term>
<term>Depletion method</term>
<term>Deposition</term>
<term>Different groups</term>
<term>Disc</term>
<term>Electroless</term>
<term>Electroless deposition</term>
<term>Enzymatic activity</term>
<term>Equal variances</term>
<term>Etching</term>
<term>Gold nanoparticles</term>
<term>Gold surfaces</term>
<term>Haucl4</term>
<term>Higher amounts</term>
<term>Implant</term>
<term>Implant materials</term>
<term>Implant surfaces</term>
<term>Lysozyme</term>
<term>Lysozyme adsorption</term>
<term>Lysozyme coverage</term>
<term>Lysozyme solution</term>
<term>Metal ions</term>
<term>Metallic gold</term>
<term>Micrococcus lysodeikticus</term>
<term>Nanoparticles</term>
<term>Nanostructured surfaces</term>
<term>Normality tests</term>
<term>Nova scotia</term>
<term>Orthopedic applications</term>
<term>Orthopedic implants</term>
<term>Oxide</term>
<term>Oxide layer</term>
<term>Phys chem</term>
<term>Plain aunps</term>
<term>Protein adsorption</term>
<term>Protein amounts</term>
<term>Protein solution</term>
<term>Prototype protein</term>
<term>Qualitative etching</term>
<term>Scanning electron microscopy</term>
<term>Second focus</term>
<term>Standard deviation</term>
<term>Standard solution</term>
<term>Surface area</term>
<term>Surface chemistry</term>
<term>Tio2</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surfaces</term>
<term>Variance</term>
<term>Various deposition methods</term>
<term>Weak interactions</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Oxyde</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti‐AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X‐ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti‐AuNPs. To study the interaction of Ti‐AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HSRCOOH)‐functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro‐BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol‐functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 × 104, 2.3 × 104, and 5.7 × 104 μg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol‐functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. © 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Duchesne, Paul" sort="Duchesne, Paul" uniqKey="Duchesne P" first="Paul" last="Duchesne">Paul Duchesne</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Padmos, J Daniel" sort="Padmos, J Daniel" uniqKey="Padmos J" first="J. Daniel" last="Padmos">J. Daniel Padmos</name>
</noRegion>
<name sortKey="Dunbar, Michael" sort="Dunbar, Michael" uniqKey="Dunbar M" first="Michael" last="Dunbar">Michael Dunbar</name>
<name sortKey="Zhang, Peng" sort="Zhang, Peng" uniqKey="Zhang P" first="Peng" last="Zhang">Peng Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005268 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005268 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0A13BF5982F85FBB30162534DE9367E024AAFAB1
   |texte=   Gold nanoparticles on titanium and interaction with prototype protein
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022